skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mitra, Aditi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a Floquet circuit describing the driven Ising chain with topological defects. The corresponding gates include a defect that flips spins as well as the duality defect that explicitly implements the Kramers-Wannier duality transformation. The Floquet unitary evolution operator commutes with such defects, but the duality defect is not unitary, as it projects out half the states. We give two applications of these defects. One is to analyze the return amplitudes in the presence of “space-like” defects stretching around the system. We verify explicitly that the return amplitudes are in agreement with the fusion rules of the defects. The second application is to study unitary evolution in the presence of “time-like” defects that implement anti-periodic and duality-twisted boundary conditions. We show that a single unpaired localized Majorana zero mode appears in the latter case. We explicitly construct this operator, which acts as a symmetry of this Floquet circuit. We also present analytic expressions for the entanglement entropy after a single time step for a system of a few sites, for all of the above defect configurations. 
    more » « less
  2. We formulate a kinetic theory of quantum information scrambling in the context of a paradigmatic model of interacting electrons in the vicinity of a superconducting phase transition. We carefully derive a set of coupled partial differential equations that effectively govern the dynamics of information spreading in generic dimensions. Their solutions show that scrambling propagates at the maximal speed set by the Fermi velocity. At early times, we find exponential growth at a rate set by the inelastic scattering. At late times, we find that scrambling is governed by shock-wave dynamics with traveling waves exhibiting a discontinuity at the boundary of the light cone. Notably, we find perfectly causal dynamics where the solutions do not spill outside of the light cone. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)